Toeplitz and Hankel operators on Bergman spaces
نویسندگان
چکیده
منابع مشابه
Toeplitz and Hankel Operators on a Vector-valued Bergman Space
In this paper, we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces L2,C n a (D), where D is the open unit disk in C and n ≥ 1. We show that the set of all Toeplitz operators TΦ,Φ ∈ LMn(D) is strongly dense in the set of all bounded linear operators L(L2,Cn a (D)) and characterize all finite rank little Hankel operators.
متن کاملFinite Rank Toeplitz Operators in Bergman Spaces
We discuss resent developments in the problem of description of finite rank Toeplitz operators in different Bergman spaces and give some applications
متن کاملHankel Operators on Weighted Bergman Spaces and Norm Ideals
Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.
متن کاملHyponormal Toeplitz Operators on the Weighted Bergman Spaces
In this note we consider the hyponormality of Toeplitz operators Tφ on the Weighted Bergman space Aα(D) with symbol in the class of functions f + g with polynomials f and g of degree 2. Mathematics subject classification (2010): 47B20, 47B35.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1992
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1992-1112549-7